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METHOD OF DETERMINING SINGULAR POINTS AND THEIR PROPERTIES 
IN THE PROBLEM OF PLANE MOTION OF A WHEELED VEHICLE* 

V.G. VHRBITSKII and L.G. LOBAS 

A method is proposed for the determination of singular points in the problem of 
plane-parallel motion of a wheeled vehicle (automobile, aircraft on the runway,etcJ 
which is valid for any arbitrary dependence of lateral reactions on the slip angle. 
A combination of this method with the Poincarg theory of indices enables us to 
determine the nature of behavior of the zero solution of the equation of perturbed 
motion. It is shown that in the case of arbitrary law of lateral slip the loss of 
coordinate origin stability corresponds either to the creation of a multiple sing- 
ular point or to the merging of singular points there. The singular case ofcubic 
approximation of lateral reactions is considered. 

According to /l/ the dynamic behavior of a model of a wheeled vehicle moving at constant 
speed in a straight line on a horizontal plane is defined by two variables: the transverse 
velocity of the center of mass and the angular yaw velocity. The driver cannot directly af- 
fect these quantities; the vehicle controllable parameters are the front wheel deviationangle 
(here assumed zero) and the wheel longitudinal velocity (assumed constant). In this formula- 
tion the problem corresponds to that in /2/. 

Linearization of the dependence of lateral force on the slip angle, used in the majority 
of investigations of the dynamics of railess vehicles, has at least two shortcomings. On the 
one hand, it does not reflect the experimental data whose great majority explicitly showtheir 
nonlinearity, and on the other, the linear model makes it impossible to explain the existence 
of the vehicle critical velocity in the case of oversteer and its absenceinthatofvehicles 
with understeer. 

The natural and simplest development of the linear theory is the cubic approximation of 
lateral reactions Yi with respect to the slip angles 6i I which was used in /3,4/ and is 
applicable when the curve Y, = Yi(6i) is convex. However, that curvehas ofteninflectionpoints 
and a fairly complex configuration. It is sometimes possible at the design stage of the 
vehicle to vary function Yi(&) by suitable selection of the vehicle parameters. Theseaspects 
make pressing the investigation of vehicle motion in the case of an arbitrary law of slip. 

A geometric method of determination of singular points by the form of function Yi- Y,(&), 
with the stability analysis carried out on the basis of the phase pattern obtained by the 
method of isoclines is proposed in /5/. The method imposes substantial constraints on the 
vehicle parameters. 

We shall show that in investigation of rectilinear motion stability it is possible to 
avoid the construction of phase curves by combining the graphic method of /5/ with the theory 
of singular points indices which states that the loss of rectilinear motion stability is con- 
nected with the appearance of a multiple singular point at the coordinate origin. 

Ifm is the mass, I is the moment of inertia of the vehicle about the vertical axis pas- 
sing through its center of mass D,v,u are the longitudinal and transverse velocitiesofpoint 
D, I,, 1, are the distances of point D from the middle of the front and rear axes, respectively, 
and w is the angular yaw velocity, then the equations of motion are of the form /l/ 

rn(U' + uo) = Y, + Y,, Im' = Y,1, - Y,1, (1) 

The determination of singular points reduces to the solution of system 

muo = Y, + Y,. Y,I, =~ Y,1, (2) 

Let Ni be the vertical load on the i-th axis. Then Ali, = m&/l, N, = m&/l. Hence the 

*Prikl.Matem.Mekhan.,45,No.5,944-948,198l 

710 



The problem of plane motion of a wheeled vehicle 711 

second of equations of system (2) is of the form Y,N,= Y$',. Introducing in the analysis the 

quantity Ysuch that 

Y,/N, = YJN, = Y (3) 

we obtain from the first of Eqs. (2) Y= VW/g. Since o = (6, - 6,) u/l, hence 

Y = U*g-'l-' (6, - 6,) (1 = 2, + Z8) (4) 

The slope of curve (4) in the plane of Cartesian coordinates of Y, and &--6z is always 
positive and increases to + 00 as the motion velocity increases. It follows from (3) that Y 

is some known function of variables &--6,, i.e. 

Y = Y (& - 6,) (5) 

The intersection points of the stright line (4) with curve (5) correspond to singular 

points of system (1). 
Let us illustrate the method on the example of linear hypothesis of slip Y,=Q,~~, ~,=a,&, 

where ai are the coefficients (constant) of resistance to slip. In this case (5) is the 

straight line 

Y = 4kp (4 - kp)-l (4 - 6,), k, = a,U(mgG kg = G/(~gh) (6) 

When )G < k,, i.e. when a,l, -a&, < 0, the straight line (6) can intersect the straight line 
(4) only at the coordinate origin. Thus for any u there is only one singular point at the 

0 6,762 0 G-4 
Fig.2 

Fig.1 

coordinate origin, which corresponds to stability of motion at all velocities. If, however, 
k, > k,, i.e. nlll -a&, > 0, then the "movable" straight line (4) approaches the straight line (6) 
as u is increased. At certain velocity D= v+ there is a whole straight lineofsingularpoints, 
which corresponds to the loss of stability of the zero solution of equations of perturbed mo- 
tion. 

Since usually the law of slip at small slip angles is linear, the Liapunov stability of 
the coordinate origin is determined in nonsingular cases by the linear part. In the case 
shown in Fig.1 (in which and other diagrams below the dash and solid lines correspond to i= 1 

andi=2, respectively) we have 

k, = Id (Y,/N#%la,,a > hi = (d P',lW/Wh=O (7) 

But the analysis of the linear model implies that when k,>k,the rectilinear motion is 
stable at any u. Hence (7) predetermines the coordinate origin stability at any U. 

Consequently, in the case of an arbitrary hypothesis about slip , either a singular point 
is generated at the coordinate origin or singular points merge there, i.e. the problemofstab- 
ility reduces to the analysis of behavior of singular points. Let us illustrate this state- 
ment on some examples. 

lo. Generation of a multiple singular point. Analysis of the right side of Fig. 
2 shows that when U<V+ there are no singular points in the small neighborhood of point (O,O), 
thecoordinateorigin is an isolated singular point and the Poincarg index of the coordinate 
origin is unity when v<v+. Hence for the remaining values of parameter u the sum of indices 
ofallsingular points must also be unity. When u=u+, a multiple singular point is generated 
at the coordinate origin. When V>U+ there are two "mobile" (i.e. dependent of velocity U) 
singular points in the first and third quadrants of the coordinate origin neighborhood. Since 
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the index of the coordinate origin is -1 (a saddle) when v>u+, the index of every mobile 
point is equal 1. 

Let us show that in some neighborhood of the coordinate origin, i.e. when L'+<u<u++ Y', 
where u'>O, these mobile singular points are stable. For this we substituteinthe equations 
of motion (1) 6,,6, for U,W using formulas 

U = - uz-' (1&i, + 116,) + . . ., w = UP (6, - 6,) + . 
in new variables the equations of motion are of the form 

6,' = P (6,, 6,), 6,' = Q (61, 6,) 
P = - [U/l + Cl,ll-’ (K’ + Z~zl-‘)l 61 $ [U/l + Q,F’ (111,[-’ - UZ-1)16~+~e 

Q = [qu-’ (1,&I-’ - m-l) - d-‘1 6, + [v/l - a,~-‘(l,*I-’ + m-l)] 6, + . . . 

=I = (d~J4)6,=,, aa = W’,l@J as+ 

Hence 

q 43.0) - _ 1 

Always p ~0. If a,& - a& g 0, then q>O for any U. When %l,- a& > 0 we have 

4 = (all1 - a.&) I-'u-~ (u+% - u'), U+ = 1 [a1a4m-' (all, - &)-'1"' 

Hence q>O when U<U+ and 4~0 when u>u+. Owing to the continuity of function div(P,Q) 
with respect to both variables I.?,, 6, in the determination region 3cz>O: )6,*I<% I~,/*<u( i.e. 
U+ < CJ < u+ + u’, u’> 0) *Idiv P, QU,.,.,, a,,,> 0. 

Since the PoincarL index of the singular point (6,*,8,*) is unity, these points are stable 
and are either nodes or focuses, Q.E.D. 

Thus, in spite of the coordinate origin being an unstable singular point (a saddle), the 
perturbations do not exceed in this case a certain finite value. Behavior of phase curves is 
shown in Fig.3 in the case when the stationary singular points are focuses. 

2O. Merging of singular points. This case is represented in Fig.4. When v < u+ 
thecoordinateorigin index is 1, while for v<v+ there are two moving singular points (in the 
firstandthird quadrant). When U= U+ these mobile points merge at the coordinate origin. 
Sincewhen U>U+ the coordinate origin is a saddle, the sum of indices of all singular points 
as v<v+ is-l. Hencethemobile singularpoints areof thesaddletype. Inthis case,with U>U+ 
the perturbation growth is unbounded. 

Fig.3 Fig.4 

The particular case of cubic approximation of lateral reactions. Let us il- 
lustrate the method on the example of Yi =oi&- bi8ii(if 1,2) /3,4/, which admits analytical in- 
vestigation, at leat with some constraints on the vehicle parameters. Experiments show that 

monotonically increasing functions Yi(&), as well as falling sections of curve Yi = Yi(&) that 
do not reach the axis of abscissas, are possible in practice. The cubic parabolas shown in 
the upper part of Fig.5 do not satisfy that condition, but the analysis of the coordinate 
origin behavior requires information about all singular points, which means that all singular- 
ities of curves must be considered. At low velocities v<vp (the lower part of Fig.5) there 



The problem of plane motion of a wheeled vehicle 713 

Fig.5 

are nine singular points including (0.0). when v>v. there are five such points, since with in- 
creasing velocity v points A,, A, and the symmetric to them relative to the coordinate origin 
points A,,A, vanish. Only points A,,A,,A,.A‘ remain. Points A,.A, lie on the bisectrix of 
the first and third quadrants of the plane 6,6, and, as the coordinate origin, are stationary. 
Points A,, A, move with change of velocity u, and it is they who play the predominant part in 

the behavior of the coordinate 
origin. Their Poincare indices 
are -1, while the coordinateorigin 
index was initially equal 1. When 
a,l* - a& <cl I the unstable singular 

points A,, A, move away from the 
coordinate origin approaching the 
stationary singular points Ai, A, 

whose indices are 1. At some vel- 
ocity u_ the indices interchange 
so that for a>v_ points A,, A, 
become of the saddle type, and the 
mobile points A,, A, with the new 

index i= i continue to recede from 
the coordinate origin. 

If, however, a& - 0~2, > 0, then 
for V<V+ the coordinate origin in- 
dex is unity. As velocity u is in- 
creased, the mobile saddle points 
A,,A, approachthe coordinateorigin 
destroying the stability region. 
When v = V+ singular points merge, 
as the result of which the coordin- 
ate origin becomes at v>v+ equal 
-1, i.e. it is transformed into 
an unstable singular point. 

The described method enables us not only to analyze the behavior of singular points for 
any form of dependence Yi= Yi(8i) but, also, to control their behavior (suitably selectingthat 
dependence) so as to obtain the beforehand specified properties of the zero solution of equa- 
tions of perturbed motion. 
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